A spatial sampling mechanism for effective background subtraction

نویسندگان

  • Marco Cristani
  • Vittorio Murino
چکیده

In the video surveillance literature, background (BG) subtraction is an important and fundamental issue. In this context, a consistent group of methods operates at region level, evaluating in fixed zones of interest pixel values’ statistics, so that a per-pixel foreground (FG) labeling can be performed. In this paper, we propose a novel hybrid, pixel/region, approach for background subtraction. The method, named Spatial-Time Adaptive Per Pixel Mixture Of Gaussian (STAPPMOG), evaluates pixel statistics considering zones of interest that change continuously over time, adopting a sampling mechanism. In this way, numerous classical BG issues can be efficiently faced: actually, it is possible to model the background information more accurately in the chromatic uniform regions exhibiting stable behavior, thus minimizing foreground camouflages. At the same time, it is possible to model successfully regions of similar color but corrupted by heavy noise, in order to minimize false FG detections. Such approach, outperforming state of the art methods, is able to run in quasi-real time and it can be used at a basis for more structured background subtraction algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Background Subtraction Based on Local Dependency Histogram

Traditional background subtraction methods perform poorly when scenes contain dynamic backgrounds such as waving tree, spouting fountain, illumination changes, camera jitters, etc. In this paper, a novel and effective dynamic background subtraction method is presented with three contributions. First, we present a novel local dependency descriptor, called local dependency histogram (LDH), to eff...

متن کامل

OPTICAL REVIEW Regular Paper Background Updating and Shadow Detection Based on Spatial, Color, and Texture Information of Detected Objects

Background model updating is a vital process for any background subtraction technique. This paper presents an updating mechanism that can be applied efficiently to any background subtraction technique. This updating mechanism exploits the color and spatial features to characterize each detected object. Spatial and color features are used to classify each detected object as a moving background o...

متن کامل

Optimal Techniques in Two-dimensional Spectroscopy: Background Subtraction for the 21st Century

In two-dimensional spectrographs, the optical distortions in the spatial and dispersion directions produce variations in the sub-pixel sampling of the background spectrum. Using knowledge of the camera distortions and the curvature of the spectral features, one can recover information regarding the background spectrum on wavelength scales much smaller than a pixel. As a result, one can propagat...

متن کامل

Classification of Background Subtracted Videos Using Neural Network-Learning Classifier

In this project we present the concept of effective classification for background subtracted videos by using learning classifier-feed forward neural network with back propagation to conquer the open problem in the context of the complex scenarios.eg:while picturing the videos in some application like cloudy (or) misty areas the object in video will be less clarity with naked eye even after the ...

متن کامل

Compressive Sensing for Background Subtraction

Compressive sensing (CS) is an emerging field that provides a framework for image recovery using sub-Nyquist sampling rates. The CS theory shows that a signal can be reconstructed from a small set of random projections, provided that the signal is sparse in some basis, e.g., wavelets. In this paper, we describe a method to directly recover background subtracted images using CS and discuss its a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007